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Abstract—A quasi-bifurcation theory, for systems subject to configuration-dependent forces, is employed
to analyze the dynamic buckling behavior of an inelastic column hinged at both ends. Numerical results are
presented and show that only certain eigenmodes of motion predominate at a time, as well as terminally
depending on the nature of the time-dependent eigenvaiues which, in turn, depend on the geometry,
material properties and the loading history of the column.

1. INTRODUCTION

The subject of dynamic buckling of columns under axial loading of short duration has been
considered by many investigators. In spite of the numerous studies of the problem, the
understanding of the complex phenomenon, which involves the interaction of axial stress waves
with flexural bending, is not yet complete, especially that of inelastic columns. The dynamic
buckling of a column is influenced by its geometry, initial imperfections or disturbances,
material properties, boundary conditions and the loading history. Instability develops from the
growth of these imperfections or disturbances and one can assess the lateral displacement
profile growth with time for various loading histories. “Buckling” is often defined as that which
occurs when the magnitude of lateral deformation exceeds an arbitrarily chosen limit.

In the early analyses of the dynamic buckling of elastic columns[1-6], the axial inertia
forces were omitted. This omission is equivalent to assuming that the axial stress wave is
propagating with a high velocity such that the axial load is practically uniform along the length
during buckling. It has been shown[7] that axial inertia effects are only of secondary
significance as far as the overall buckling response of a column is concerned, provided that the
rate of loading is not too high. Furthermore, under such conditions, the inclusion of rotary
inertia and shear deformations have also relatively little effect on the buckling resuits(8, 9].
There have been other investigations on the impact stability of elastic columns including axial
inertia forces[10, 11] and other simplifying assumptions which may require further analytical
and/or experimental verification.

There have been few investigations on the dynamic buckling of inelastic columns. However,
a noticeable experimental investigation on the dynamic flexural buckling of rods subject to axial
impact has been performed by Abrahamson and Goodier[12, 13]. The observed phenomenon,
which involves the interaction between axial non-linear plastic waves and flexural waves is only
partially understood[14]. The present paper is concerned with a comparatively simple problem
which may iilustrate one aspect of the dynamic buckling behavior of inelastic columns where
the rates of axial loading are not too high such that axial inertia effects are negligible.

In this paper, a simply supported column made of a bilinear material and subject to arbitrary
inertial disturbances is considered. In his statistical analysis, however, Lindberg[15] has found
that initial random deflections lead to good agreement with the observed buckling wave lengths
of a thin elastic bar subject to axial impact. The lower end of the present column is stationary
while the upper end may move downward with a stepwise axial velocity
in a short duration. To simplify the analysis, the dynamic Euler-Bernoulli beam theory
is employed and the rotary inertia and transverse shear deformation are not considered. The
dynamic buckling process is determined by a recent developed quasi-bifurcation theory[16, 17]
which is briefly described in the paper. Numerical resuits for a number of columns are
presented and discussed.

It is also the purpose of this paper to employ the present column problem to illustrate that
the dynamic stability of a system subject to configuration-dependent forces can be treated as an
initial-value-eigenvalue problem which may be solved by the quasi-bifurcation theory.
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2. QUASI-BIFURCATION

A certain motion of a system of n degrees of freedom is considered stable if, after a
sufficiently small disturbance, the system remains to follow the undisturbed motion. In other
words, the undisturbed motion is stable if the deviated motion, {,(f), r=1,..., n, the difference
between the disturbed and undisturbed motions in n generalized coordinates, remains small.

For any deviated motion, stable or not, there is the following identity:

%[,(1)(,(t)=%y,‘y,+jot [y’,‘y,+J: &L d7+J: {.,{',dr]dt' (1)

in which dots indicate differentiation with respect to time ¢ and v, and 7, are the initial values
of the deviation motion. When the generalized forces, P,, of the system are configuration-
dependent and when the deviated motion is relatively small, the deviated motion is governed by
the following variational equations:

L=A,=A4P, r=1,...,n; s=1,...,n ()]

where the coefficients A,, are known functions of time depending on the undisturbed motion
only. Equation (1) shows that the undisturbed motion is unstable or the deviation motion is not
bounded when the quadratic term

Q=APL, =t = Anld, €)

is positive after a critical time, ¢.,, for any possible deviated motion. Furthermore, a variation of
Q yields the following relationship:

8Q =2A.L,8(, =208¢, @

which may be employed, by appropriate coordinate transformation, to obtain equations of
motion in other generalized coordinates.

The quadratic form Q at a given time can always be reduced to a linear combination of
squares[18] such as:

Q=awn’, m=1,...,n 8]

where a,(f) are the time-dependent eignevalues, n, are related to {, by an orthogonal
transformation

{’ = lmrnm (6)

where [,, are the directional numbers of n mutually orthogonal vectors, 7,, in the {, space
known as eigenvectors or as eigenmodes of motion. Such transformation is called a trans-
formation to principal axes. For cases where /,, are always constants, a variation of Q leads to
the uncoupled ordinary differential equations

M =Qpl, m=1...,0 4]

where the underscores are placed under the indices to suspend the summation convention. If ¢,
and 7, are normalized, Q assumes the greatest value equal to the largest eigenvalue, a;,
corresponding to the configuration 7, in the {, space by a theorem of Weierstrasse[18].
Therefore, a; and 7, may also be determined by the extremum condition. If a, >0 and a; > o,
for r# k, then the eigenmode of motion, 7, grows at the highest rate, provided that the initial
disturbance has such a component. Such phenomenon is called a quasibifurcation phenomenon.
The above concept and approach are applied to the solution of the present problem.

Of an elastic-plastic solid of a volume, V, let the undisturbed motion be described by the
displacement Ux(Xy, !) in the X), spatial coordinate system. The deviated (or additional)
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displacement is denoted by ug(Xy, t). The corresponding Lagrangian strains are ex; and ex.
and the corresponding Piola-Kirchhoff stresses are Sx; and sk, respectively. When ; is
relatively small, the additional strain, e, , is given by

1
€xL=3 (ur+upx + U ity L + Ung, Litng, ) ®

and the deviated motion is governed by the following equation of motion:
APy =[Skrupr + skL(Ou + Un)lx = plin )]

where p is the initial mass density. The deviated motion satisfies the following boundary
conditions: ux(Xu, t)=0 on that part of the boundary with prescribed kinetic conditions and

[Skrumr + sxr(8pr + Up)INk =0 (10)

on that part of the boundary with prescribed surface forces, where Nx is the outward unit
normal to the surface. The quadratic term for the elastic-plastic continuum is given by

Qu) = IV APpup V. 1n

For a body which has no interior discontinuities of the variables, the quadratic term may be
written as

Qlug)=- [v (SkLumxinr + Skrexc)dV. (12)

The motion and its stability of the solid may be determined by analyzing the functional Q(ux).

3. COLUMN MODEL

For convenience of analysis, a long and straight column of a uniform rectangular cross-
section and with hinged ends is considered. Its dimensions are length, /, section width, b and
depth, A, such that 4 < b and h <. The column has an initial mass density, p. The lower end of
the column is stationary while the upper end may move vertically downward with an axial
velocity, vy, in the form of a step function. Meanwhile, the column may be subjected to
infinitesimal lateral disturbances. The subsequent lateral motion of the column is to be
investigated.

It is assumed that the axial velocity is sufficiently slow so that the internal resultant axial
force may be considered constant along the entire length of the column. It is also assumed that
the effects of rotational inertia and transverse shear are negligible.

For the purpose of this paper, the property of the column material may be characterized as
having a bilinear stress-strain relationship which may be described in terms of the following
three parameters: Young’s modulus, E, initial yield strain, ¢, and a single tangent modulus, E,
(E, >0, and E, < E) associated with incremental plastic loading. Let the uniform axial stress
and strain of the undisturbed motion of the column be denoted by S and e, respectively and let
the additional axial stress and strain associated with the lateral motion be denoted by s and ¢,
respectively. The stress-strain relationship may be specifically expressed as:

s=Eé for et+e=e* and (e+e)(é+é)>0
s=FEé for |e+e|<|e*| or (e+e€)(é+é)<0 (13)

where e* (Je*| > |e,) is the largest local subsequent yielding strain that the material has ever
experienced.
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4. DYNAMIC BUCKLING
Let the origin of the cartesian axes of reference (x, y, z) be at the centroid of the base, the
x-axis being positive upward along the line of centroid and the z-axis being parallel to the depth
of the sections. The respective displacement components of the centroid of a section caused by
the lateral motion are denoted by u, v and w. For symmetrical bending, v = 0. When the strains
in the column are relatively small, the uniform axial compressive strain (positive in com-
pression) may be written as:

e=- for >0 (14)

which increases monotonically with time. Employing the Euler-Bernoulli assumption, the
additional axial strain associated with the flexural motion may be expressed by:

€= Uy = IW,ypy 15

The uniform axial stress (positive in compression) is given by:

S = E[(1-B)ey+ Be] (16)
where
_ 1 for e<eg
b= E,  for e>e. (n
E
The additional axial stress rate in the early stage of buckling when ¢ < ¢ is given by:
s.={Eé for e<e or é+é<0 a18)
Eé for e>¢; and é+é>0.

Furthermore, when é < é in an entire period 0 < t < t*, the additional axial stress in that period
is given by:

s = EPe. (19

The omission of the axial inertia effects is equivalent to the condition that there is no deviation
in the axial load during buckling, or

hi2
b f sdz=0. (20)
-h2

Substitution of eqns (15) and (19) into (20) yields
Uy =0. @1

Employing eqns (12)-(21) the quadratic functional for the lateral motion of the column in
the period 0 < ¢ < t* may be written as:

Q=bh [ (Sw.2- Bgktw) dx @)

where k= hf2v/3 is the radius of gyration of the cross-section. The functional Q, may be
further simplified by the following transformation:

W= mf_;l fin()sin % 23)
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Substituting of eqn (23) into eqn (22) yields

S aniin(t) (24)

_bhE
2b
where

am = B(m)? [(% - 1) ot 2L - (’"T'”")z] 25)

Equations (23) and (24) show that w is expressed in terms of the eigenvectors as given by eqn
(23). Employing the variational relationship given by eqn (4) with respect to a specific 7, the
following uncoupled, dimensionless equation of motion is obtained:

aZ
7:’;-=a,,,a,,,, m=1,2,3,... (26)

where 1, = fin/l, T =(cot/l) and cy = \/(E/p) is the speed of propagation of the axial wave.

Equation (26) and the functional, Q, in eqn (24) show when any one of the a, becomes
positive, that particular 5,, mode of motion may grow and the undisturbed axial motion may be
unstable. Equation (25) shows that a;(r) has first the algebraically largest value which changes
from negative to positive at the earliest time. In fact, the uniform axial strain corresponding to
a; =0 is equal to the static buckling strain, e,, given by

oo ()1
&= Co ] B 1) e @n
Let the time at which a,, = 0 be denoted by 7,, or
=G (mmk ’_(1_ ] ]
Tm_”o[( [ ) B l)e" ’ m=123,.... (28)

It is noted that the bilinear material property may cause a, to have a jump in value at
7= Coolvy. If &,y <0 for e < ey and a,, >0 for e > ¢, then a,, =0 occurs at 7, = cyeo/vs.

In the time interval 7, <7<, a;>0 and a,, <0 for m=2,3,4,..., only the a; mode of
motion grows montonically. If the velocity ratio vo/c, is infinitesimal, the time interval
n<7<rm is very long. The a; mode of motion grows only in that period and leads to the
buckling failure of the column in that particular buckling mode and at an axial strain slightly
higher than e,. If the velocity ratio, vy/c,, is comparatively large, 7, 3, 73, €tc. may be close
together and a number of eigenmodes of motion may be activated at the same time. In a period
T, <7< Tpyy, all @, with.m <n are positive except that a; may or may not have the largest
positive value depending on the geometry, material properties and rate of loading, vg, of the
column. To determine quantitively dynamic buckling behavior of an inelastic column, it is
convenient to integrate eqn (26) by a numerical procedure. A computer program based on the
fourth order Runge~Kutta method has been prepared for this purpose. A number of cases with
various combinations of parameters have been considered and are described as follows.

5. NUMERICAL RESULTS

Numerical results have been obtained by the foregoing procedure for a number of columns
having the same material properties: E,/E = 0.1 and e, = 0.005. All the columns are subjected to
initial disturbances producing an initial displacement profile which has the components of all
cigenmodes of deformation of an equal amplitude such that ,, (0) = +0.00001 or - 0.00001 (but
not simultaneously) and %, (0) =0for m =1,2,3,. ... The typical results are shown in Figs. 1-6.

Figure 1 shows the histories of the amplitudes of a number of eigenmodes of motion of Case
1 having the parameters: vo/co=0.0001 and (wk/!) =0.002. The static buckling strain of this
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column is in the elastic range and is reached at 7,. The loading velocity is relatively slow such
that the first eigenmode of motion predominates and grows until the collapse of the column
before any other mode of motion can grow. The deformed profiles of the column at two
different times are shown in Fig. 2. Here, the dynamic buckling mode is similar to the static
buckling mode, but the dynamic axial strain at collapse is about 2.5 times larger than the static
buckling strain.

Figure 3 shows the histories of the amplitudes of a number of eigenmodes of motion of Case
2 having the parameters vo/co=0.001 and (k/l)* = 0.002. This column is identical to that of
Case 1 except the loading velocity is ten times higher. Due to the abrupt change in material
stiffness and the higher loading velocity, there are four eigenmodes of motion activated at 7 =5
when the initial yield strain is reached. However, out of the four modes, n, mode of motion
grows at the highest rate, as shown in Fig. 3. The deformed profiles of the column at 7 = 4.5 and
r=9.5 are shown in Fig. 4. Soon after r=9.5 and in some regions of the column, the
deflections are large. Unloading occurs partially over the cross-sections and the determination
of the further motion would require another extended nonlinear analysis which may be
considered in the future.

Figures 5 and 6 show the results of Case 3 having the parameters vo/co=0.001 and
(wk/1)* = 0.0045. Of this comparatively stout column, only 7, and %; modes of motion are
activated at the initial yield strain at + = 5, and 5, mode of motion grows at the highest rate. It is
of interest to note that the amplitude of oscillation of 5, or s mode of motion changes from a
small to a relatively larger value, as shown in Fig. 5, when the eigenvalue changes abruptly and
when the stiffness of the material is reduced from that of Young's modulus, E, to that of
tangent models, E,, at 7=35. However, as long as a, or a; is negative, the 7, or ns mode of
motion remains oscillatory and bounded within the period shown.

6. CONCLUDED REMARKS

The results of this paper indicate that the approach presented herein may be employed to
determine the dynamic buckling behavior of an elastic-plastic column under certain axial
loadings. The perturbed flexural motion can be expressed as a sum of the uncoupled eigen-
modes of motion of the column. The eigenmodes of motion can be obtained from a quadratic
functional. The eigenmodes of motion depend on the undisturbed motion, geometry, material
properties and loading history of the column. The initiation of an eigenmode of motion requires
the presence of that particular mode of initial disturbance, no matter how small it is. The
development of each eigenmode of motion, however, depends strongly on the nature of the
time-dependent eigenvalue. When all the eigenmodes of motion are initially perturbed, only
certain eigenmodes of motion predominate at a time depending on the characteristics of the
functional, Q, which describes inherently the intrinsic interactions between the undisturbed and
disturbed motion of the column.

It is noted that “5Q = 0" is the quasi-static bifurcation criterion employed by Hill{19]. It is
obvious that quasi-static bifurcation phenomena are naturally a sub-class of dynamic quasi-
bifurcation phenomena, as partially illustrated in this paper. However, to understanding fully
the dynamic quasi-bifurcation phenomena of elastic-plastic continua, further studies are
required.
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